Exercise 1

Find the series solution for the following homogeneous second order ODEs:

$$
u^{\prime \prime}+x u^{\prime}+u=0
$$

Solution

Because $x=0$ is an ordinary point, the series solution of this differential equation will be of the form,

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

To determine the coefficients, a_{n}, we will have to plug the form into the ODE. Before we can do so, though, we must write expressions for u^{\prime} and $u^{\prime \prime}$.

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \rightarrow \quad u^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \quad \rightarrow \quad u^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Now we substitute these series into the ODE.

$$
\begin{gathered}
u^{\prime \prime}+x u^{\prime}+u=0 \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=0}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
\end{gathered}
$$

The first series on the left is zero for $n=0$ and $n=1$, so we can start the sum from $n=2$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Since we want to combine the series, we want the first series to start from $n=0$ just like the other two. We can start it at $n=0$ as long as we replace n with $n+2$.

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

The point of doing this is so that we have x^{n} in every series. Now we can combine the series.

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2} x^{n}+n a_{n} x^{n}+a_{n} x^{n}\right]=0
$$

Factor the left side.

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n+1) a_{n}\right] x^{n}=0
$$

Thus,

$$
\begin{gathered}
(n+2)(n+1) a_{n+2}+(n+1) a_{n}=0 \\
(n+2) a_{n+2}+a_{n}=0 \\
a_{n+2}=-\frac{1}{n+2} a_{n} .
\end{gathered}
$$

Now that we know the recurrence relation, we can determine the coefficients.

$$
\begin{array}{ll}
n=0: & a_{2}=-\frac{a_{0}}{2} \\
n=1: & a_{3}=-\frac{a_{1}}{3} \\
n=2: & a_{4}=-\frac{a_{2}}{4}=\frac{a_{0}}{8} \\
n=3: & a_{5}=-\frac{a_{3}}{5}=\frac{a_{1}}{15} \\
n=4: & a_{6}=-\frac{a_{4}}{6}=-\frac{a_{0}}{48} \\
n=5: & a_{7}=-\frac{a_{5}}{7}=-\frac{a_{1}}{105}
\end{array}
$$

Therefore,

$$
u(x)=a_{0}\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\cdots\right)+a_{1}\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}+\cdots\right),
$$

where a_{0} and a_{1} are arbitrary constants.

